[Ultrastructural changes in the MP3 neuron of the mollusk Lymnaea stagnalis after cryopreservation of the isolated brain].

Abstract

Investigation of a possibility of long-term storage of frozen (-196 degrees C) viable neurons and nervous tissue is one of the central present day problems. In this study ultrastructural changes in neurons of frozen-thawed snail brain were examined as a function of time. We studied the influence of cryopreservation, cryoprotectant (Me2SO), cooling to 4-6 degrees C, and a prolonged incubation in physiological solution at 4-6 degrees C on dictyosomes of Golgi apparatus, endoplasmic reticulum (ER) cisternae and mitochondria. It has been found that responses of these intracellular structures of cryopreserved neurons to the above influences are similar: dissociation of Golgi dictyosomes, swelling of endoplasmic reticulum cisternae and mitochondrial cristae. Both freezing-thawing and cryoprotectant were seen to cause an increase in the number of lysosomes, liposomes, myelin-like structures, and to form large vacuoles. The structural changes in molluscan neurons caused by cryopreservation with Me2SO (2 M) were reversible.

Topics

    0 Figures and Tables

      Download Full PDF Version (Non-Commercial Use)